Final Exam Review

1. \quad Divide.
$\left(x^{3}+5 x^{2}-7 x+2\right) \div(x+2)$
2. Find the quotient.

$$
\left(2 x^{3}+17 x^{2}+23 x-42\right) \div(2 x+7)
$$

3. Subtract. $\left(9 z^{2}+3 z-7\right)-\left(4 z^{2}-8 z+9\right)$
4. Simplify. $\left.\underline{\left(x^{2} y^{-3}\right)}\right)^{5} \quad$ 6. \quad Simplify. $\left(-2 a^{5} b^{3}\right)^{6} \cdot\left(-4 a^{5} b^{6}\right)^{-3}$
5. Solve. $3 x^{5}+15 x=18 x^{3}$

| 9. Factor completely. $2 z^{4}-1250$ | 10. Factor completely. $d^{4}-7 d^{2}+10$ |
| :--- | :--- | :--- |

11. Factor completely.
$x^{5}-25 x^{3}+64 x^{2}-1600$
12. Find all the factors, zeros, and x-intercepts. $f(x)=x^{3}-6 x^{2}+4 x-24$
13. Find all the factors, zeros, and x-intercepts. $f(x)=x^{4}+5 x^{3}+4 x^{2}+20 x$
14. Find the value of k so the remainder is 1 .
$\left(x^{2}+3 x+3\right) \div(x-k)$
15.

Degree: Even / Odd
Leading Coefficient: Positive / Negative
How many Relative Maxima:
How Many Relative Minima:
Least Degree of the polynomial:
Real Zeros:
Known factors based on the real zeros:
Domain and Ranae:
18. Write a polynomial function of least degree with a leading coefficient of 1 given the following zeros: $-4,7-\sqrt{5}$

19. Write a polynomial function of least degree with a leading coefficient of 1 given the following zeros: 0 (double), $3+2 i$
20. Given the functions, perform the indicated operations.
$f(x)=x+8 \quad g(x)=x^{2}-9 \quad h(x)=2 x+1$
a) $\quad\left[\begin{array}{ll}h & g\end{array}\right](3)$
b) $\quad\left[\begin{array}{lll}g & f & h\end{array}\right](x)$
c) $\quad f(x)-g(x)$
21. Simplify. $\sqrt[3]{\frac{343 a^{12} b^{9}}{27 c^{2}}}$
22. Simplify. $\frac{x^{-\frac{1}{3}}+3 x^{\frac{1}{3}}}{\sqrt[3]{x^{-2}}}$

31. Find the inverse of $g(x)=\frac{2 x^{3}-6}{9}$
32. Verify algebraically that the following functions are inverses of each other.

$$
f(x)=3 x+9 \quad g(x)=\frac{1}{3} x-3
$$

33. Use $\log _{9} 7 \approx 0.8856$ and $\log _{9} 4 \approx 0.6309$ to evaluate the following:
a) $\log _{9} \frac{7}{4}$
b) $\quad \log _{9} 28$
c) $\log _{9} 324$
d) $\log _{9} \frac{112}{36}$

| 34. | Evaluate. $7^{\log _{7}(x-5)}$ | Evaluate. $\quad \log _{7} \sqrt[9]{7}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| 36. | Evaluate. $\quad \log _{8}\left(\log _{5} 5\right)$ | | | |

47. Rewrite the following function in $f(x)=a b^{x}$ form using properties of exponents. State if it is a growth or decay exponential function.
$f(x)=\frac{1}{4} \cdot 2^{-x-1}$
49. Write an exponential function whose graph passes through the points: $(-3,243)\left(0, \frac{1}{3}\right)$
48. Rewrite the following function in $f(x)=a b^{x}$ form using properties of exponents. State if it is a growth or decay exponential function. $f(x)=2(27)^{\frac{x}{3}}$
50. Write an exponential function whose graph passes through the points: $(1,1.25)(3,31.25)$
51. Given the parent function $f(x)=\left(\frac{1}{6}\right)^{x}$, write the equation for the function $g(x)$ after each of the following transformations.
a) Vertically stretch by a factor of 4, shifted down 3 units, and reflected over the y-axis.
b) Horizontally compress by a factor of $\frac{1}{5}$ and reflected over the x-axis.
c) Horizontally stretched by a factor of 8 and shifted down 3 units.
52. Graph $f(x)=2^{(x-1)}-3$

Domain:
Range:
x-intercept(s):
y-intercept(s):
Horizontal Asymptote(s):
Vertical Asymptote(s):
End Behavior:

x	y

53. Graph $f(x)=\left(\frac{1}{3}\right)^{(x+2)}-4$
Domain:
Range:
x-intercept(s):
y-intercept(s):
Horizontal Asymptote(s):
Vertical Asymptote(s):
End Behavior:

54. $f(x)=\left(\frac{1}{3}\right)^{x}$

55. $f(x)=2^{x}$

Transformation: Reflect the graph over the x-axis.
a. How did the coordinates change?
b. What equation would result from the transformation?
c. Complete the table.

x				
y				

Transformation: Horizontally stretch by a factor of 3.
a. How did the coordinates change?
b. What equation would result from the transformation?
c. Complete the table.

\boldsymbol{x}				
\boldsymbol{y}				

56. In 1992, 1,219 monk parakeets were observed in the United States. For the next 11 years, about 12% more parakeets were observed each year. Use the formula $A=P(1 \pm r)^{n}$.
a. Write an exponential function showing the growth of the parakeets.
b. In 1998, about how many parakeets were observed in the US?
c. In what year were 1,712 parakeets observed?
57. Graph the function. State the domain, range, x-intercept(s), y-intercept(s), vertical asymptote(s), and horizontal asymptote(s).
Range: \qquad
\qquad
\qquad
y-intercept(s):
Domain: \qquad
58. Graph the function. State the domain, range, x-intercept(s), y-intercept(s), vertical asymptote(s), and horizontal asymptote(s).

$$
f(x)=\frac{2 x+4}{x^{2}-9}
$$

VA:
HA:
x-intercept(s): \qquad
y-intercept(s): \qquad
Domain: \qquad
Range: \qquad
59. Simplify. $\frac{x+5}{x^{2}+10 x+25} \cdot \frac{2 x+10}{3 x+15}$
60. Simplify. $\frac{3 x^{2}-3}{2 x^{2}+8 x+6} \div \frac{5 x^{2}-10 x+5}{4 x+12}$

